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Preface to the Eighth Edition
For the past two decades, Dr. Gerald Karp has written Cell and 

Molecular Biology: Concepts and Experiments. During this time, 

he has maintained a consistent focus on combining rigor with 

accessibility, so that even students without prior training in cell 

biology, molecular biology, or biochemistry have been able to 

learn cell biology not just as a collection of facts but as a process 

of discovery. The value of this approach is that the lessons 

learned extend far beyond the field of cell biology, and provide a 

way for students to learn how science works, how new experi-

ments can overturn previous dogmas, and how new techniques 

can lead to groundbreaking discovery. This approach makes cell 

biology come alive.

After seven editions, Dr. Karp is ready to move on to other 

adventures. We are excited to take on the challenge of continuing 

Dr. Karp’s unique approach to teaching cell biology, while continu-

ing to put students first. Our goal for this revision was to build 

upon Karp’s hallmark experimental approach by bringing in our 

own unique perspectives and harnessing today’s technology. With 

our new Experimental Walkthrough feature, available in 

WileyPLUS Learning Space, students can see first-hand how key 

experimental techniques are performed in the lab. These offer a 

mix of video, which show how researchers carry out experiments, 

and 3D animations that show a molecular-level view of how the 

experiments work. These Walkthroughs provide context and a vis-

ual explanation that helps make these important experimental 

techniques more concrete.

A solid understanding of quantitative concepts is becoming 

increasingly important within cell biology, but is an area that 

many students struggle with. To address this issue, we have also 

added another new video feature, called Quantitative Tutorials, 

to visually illustrate how to solve specific analytical questions at 

the end of each chapter. The Quantitative Tutorial provides an 

accessible, student‐friendly review of basic mathematical concepts 

used within the context of a biological problem, and will expand 

the available resources for quantitative and physical concepts 

within this 8th edition.

One key feature of the past editions was to highlight how cell 

biology impacts our daily lives, in terms of medicine and other 

areas of society. The Human Perspectives sections highlight 

human interest stories to reinforce and review basic cell biology, 

and also provide examples of how fundamental discoveries have 

progressed into clinical practice. We have expanded this feature 

so that now every chapter has at least one Human Perspectives 

section. As part of this feature we report on the latest clinical tri-

als for various cell biology‐based therapies and drugs, a feature 

that we hope will inspire students who are pursuing careers in 

health sciences fields. In addition to the full Human Perspectives 

sections, each chapter is now introduced with a short “chapter 

opener” designed to generate enthusiasm about the science in 

each chapter through provocative issues or questions. We hope 

that this will give our readers the opportunity to think more 

about the links between science, society, and our place in the 

universe.

Working on the 8th edition side by side with Dr. Karp has given 

us renewed admiration for his writing and his ability to keep track 

of the cutting edge in the full range of topics that comprise cell and 

molecular biology. In this and future editions of Karp’s Cell and 

Molecular Biology: Concepts and Experiments, we are dedicated to 

carrying out Dr. Karp’s original mission of providing an interesting, 

modern and readable text that is grounded in the experimental 

approach. We welcome your ideas and feedback as we continue our 

work on this text, so please feel free to get in touch. 

Janet Iwasa (jiwasa@gmail.com) 

Wallace Marshall (Wallace.Marshall@ucsf.edu)

WileyPLUS Learning Space connects the text to carefully-selected 

media examples such as video, animations, and diagrams, and 

provides students a multitude of tools and content for self-study 

and practice. Instructors can customize their course content for 

students, create online homework and quizzes, and have insight 

into student activity through data analytics and reporting features. 

To try it, visit http://www.wileypluslearningspace.com. Here are 

some of the resources available in WileyPLUS Learning Space:

 ● Experimental Walkthrough Videos

 ● Quantitative Tutorial Videos

 ● Cell View Animations 

 ● Video Library

 ● Biology Basics Animations

 ● Instructor’s Manual by Joel Piperberg, Millersville University

 ● Clicker Questions by Leocadia Paliulis, Bucknell University 

and Omar Quintero, University of Richmond

 ● Lecture PowerPoint Presentations by Edmund B. Rucker, 

University of Kentucky

 ● Testbank and Answer Key by Robert Seiser, Roosevelt University
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Martin Rodbell

1993 Kary Mullis Chemistry Polymerase chain reaction (PCR) 726

Michael Smith Site‐directed mutagenesis (SDM) 735

Richard J. Roberts M & P Intervening sequences 420

Phillip A. Sharp

1992 Edmond Fischer M & P Alteration of enzyme activity by phosphorylation/

dephosphorylation

109, 600

Edwin Krebs

1991 Erwin Neher M & P Measurement of ion flux by patch‐clamp recording 143

Bert Sakmann

1990 Joseph E. Murray M & P Organ and cell transplantation in human disease 684

E. Donnall Thomas

1989 J. Michael Bishop M & P Cellular genes capable of causing malignant 

transformation

633

Harold Varmus

Thomas R. Cech Chemistry Ability of RNA to catalyze reactions 425, 450

Sidney Altman

1988 Johann Deisenhofer Chemistry Bacterial photosynthetic reaction center 207

Robert Huber

Hartmut Michel

1987 Susumu Tonegawa M & P DNA rearrangements responsible for antibody diversity 681

1986 Rita Levi‐Montalcini M & P Factors that affect nerve outgrowth 379

Stanley Cohen

1985 Michael S. Brown M & P Regulation of cholesterol metabolism and endocytosis 319

Joseph L. Goldstein

1984 Georges Köhler M & P Monoclonal antibodies 738, 739

Cesar Milstein

Niels K. Jerne Antibody formation 666

1983 Barbara McClintock M & P Mobile elements in the genome 391, 392, 394

1982 Aaron Klug Chemistry Structure of nucleic acid‐protein complexes 55

1980 Paul Berg Chemistry Recombinant DNA technology 692, 723

Walter Gilbert DNA sequencing technology 728

Frederick Sanger

Baruj Bennacerraf M & P Major histocompatibility complex 684

Jean Dausset

George D. Snell

1978 Werner Arber M & P Restriction endonuclease technology 723

Daniel Nathans

Hamilton O. Smith

Peter Mitchell Chemistry Chemiosmotic mechanism of oxidative phosphorylation 176

1976 D. Carleton Gajdusek M & P Prion‐based diseases 63

1975 David Baltimore M & P Reverse transcriptase and tumor virus activity 633
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Year Recipient* Prize Area of Research Pages in Text
Renato Dulbecco

Howasrd M. Temin

1974 Albert Claude M & P Structure and function of internal components of cells 262

Christian de Duve

George E. Palade

1972 Gerald Edelman M & P Immunoglobulin structure 678

Rodney R. Porter

Christian B. Anfinsen Chemistry Relationship between primary and tertiary structure of 

proteins

60

1971 Earl W. Sutherland M & P Mechanism of hormone action and cyclic AMP 590, 595, 596

1970 Bernard Katz M & P Nerve impulse propagation and transmission 160

Ulf von Euler

Luis F. Leloir Chemistry Role of sugar nucleotides in carbohydrate synthesis 273

1969 Max Delbrück M & P Genetic structure of viruses 23, 380

Alfred D. Hershey

Salvador E. Luria

1968 H. Gobind Khorana M & P Genetic code 722‐723

Marshall W. Nirenberg

Robert W. Holley Transfer RNA structure 439

1966 Peyton Rous M & P Tumor viruses 632

1965 Francois Jacob M & P Bacterial operons wand messenger RNA 406, 456

Andre M. Lwoff

Jacques L. Monod

1964 Dorothy C. Hodgkin Chemistry X‐ray structure of complex biological molecules 717

1963 John C. Eccles M & P Ionic basis of nerve membrane potentials 160

Alan L. Hodgkin

Andrew F. Huxley

1962 Francis H. C. Crick M & P Three‐dimensional structure of DNA 374‐377

James D. Watson

Maurice H. F. Wilkins

John C. Kendrew Chemistry Three‐dimensional structure of globular proteins 56

Max F. Perutz

1961 Melvin Calvin Chemistry Biochemistry of CO
2
 assimilation during photosynthesis 213, 214‐215

1960 F. MacFarlane Burnet M & P Clonal selection theory of antibody formation 666

Peter B. Medawar

1959 Arthur Kornberg M & P Synthesis of DNA and RNA 518, 523

Severo Ochoa

1958 George W. Beadle M & P Gene expression 405‐406

Joshua Lederberg

Edward L. Tatum

Frederick Sanger Chemistry Primary structure of proteins 53

*In a few cases, corecipients whose research was in an area outside of cell and molecular biology have been omitted from this list.

**Medicine and Physiology
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Acquired immune deficiency syndrome. See 
AIDS

Acute lymphoblastic leukemia (ALL), 644, 651, 
653, Chapter 16

Acute myeloid leukemia (AML), 647–648, 651, 
652f, 653f, Chapter 16

Adaptive (acquired) immune response, 665, 
Chapter 17

Adenoviruses, 21HP, 23, 24f, 158HP, 420–421, 
631, 641, 643, Chapter 1, Chapter 4, 
Chapter 11, Chapter 16

Adrenoleukodystrophy (ALD), 197HP, 
Chapter 5

African populations, genomes of, 385–386, 
Chapter 10

Agammaglobulinemia, 665, Chapter 17
Aging

Down syndrome (trisomy 21) and, 479HP, 
Chapter 14

mitochondrial disorders and, 195HP, Chapter 5
premature (progeria), 461, 536HP, Chapter 12, 

Chapter 13
radicals and, 34–35HP, Chapter 2
telomeres and, 477, Chapter 12

AIDS (acquired immune deficiency syndrome)
helper T cells and, 678, Chapter 17
resistance, 595–596HP, 678, 684, 685, 

Chapter 15, Chapter 17
resistance to drugs, 74, 101–102HP, Chapter 2, 

Chapter 3
therapies for, 433HP, Chapter 11

ALD (adrenoleukodystrophy), 197HP, 
Chapter 5

ALL (Acute lymphoblastic leukemia), 644, 651, 
653, Chapter 16

Alzheimer’s disease (AD), 64–67HP, 66HPf, 165, 
Chapter 2, Chapter 4

AML (Acute myeloid leukemia), 647–648, 651, 
652f, 653f, Chapter 16

Anesthetics, 161, Chapter 4
Aneuploidy, 566, 577–578HP, 630, 630f, 643, 

645, Chapter 14, Chapter 16
Antacid medications, 154, Chapter 4
Antibiotics, 100–102HP

modes of, in clinical use, 101HPt, Chapter 3
penicillin, 99, 100HP, 101HPt, 102HP, 

Chapter 3
Antidepressants, 165, Chapter 4
Anti-inflammatory drugs, and cancer, 632, 

Chapter 16
Antioxidants, 35HP, Chapter 2
Appetite, 111, 165, Chapter 3, Chapter 4
Arthritis, rheumatoid, 669HP, 670HP, 671HP, 

740, Chapter 11, Chapter 18
Atherosclerosis, 302, Chapter 8
Autoimmune diseases, 668–671HP,  

Chapter 17

Graves’ disease and thyroiditis, 669HP, 
Chapter 17

inflammatory bowel diseases (IBDs), 669HP, 
Chapter 17

multiple sclerosis (MS), 669HP, Chapter 17
rheumatoid arthritis, 669HP, Chapter 17
systemic lupus erythematosus (SLE), 669HP, 

669HPf, Chapter 17
treatment of, 670–671HP, Chapter 17
type 1 diabetes (T1D), 669HP, Chapter 17

Bacterial toxins, 590, Chapter 15
Bacteriophage therapy, 25, Chapter 1
Benign tumors, 638, 644, 650, Chapter 16
Biofilms, 13, 157HP, 583, Chapter 1, Chapter 4, 

Chapter 15
Blistering diseases, 237, 245, 338, 671, 

Chapter 7, Chapter 9, Chapter 17
Blood-brain barrier, 247, Chapter 7
Blood cell differentiation, 666f, Chapter 17
Blood clots, 46, 49, 229, 231, 233, 233f, 281, 302, 

392, 586, Chapter 2, Chapter 7, Chapter 8, 
Chapter 10, Chapter 15

Blood glucose, 599–602, 599f, Chapter 15
Blood-group antigens, 122–123, 123f, 398, 684, 

Chapter 4, Chapter 10, Chapter 17
Bone marrow, 18HP, 197HP, 231f, 235, 242HP, 

288HP, 402HP, 475, 476, 481, 662, 662f, 665, 
666f, 669HP, 686, Chapter 1, Chapter 5, 
Chapter 7, Chapter 8, Chapter 10, 
Chapter 12, Chapter 17

Bone marrow transplantation, 18HP, 197HP, 
242HP, Chapter 1, Chapter 5, Chapter 7

Booster shots, 671, Chapter 17
Breast cancer

BRCA1 and, 512, 645, Chapter 13,  
Chapter 16

cause of, 631, Chapter 16
gene-expression analysis, 652–653, 654f, 

Chapter 16
genetic mutations in, 640, 642f, 644, 

Chapter 16
genetics and, 636, Chapter 16
immunotherapy for, 655, Chapter 16
karyotype of cell from, 630f, Chapter 16
new cases and deaths in US in 2015, 629f, 

Chapter 16
PI3K pathway in, 651, Chapter 16
Preventive mastectomy, 512, Chapter 13
protein-inhibiting drugs for, 657, Chapter 16
PSA determinations for detecting, 660, 

Chapter 16
research efforts, 628, Chapter 16
tumor-suppressor genes in, 640t, Chapter 16
tyrosine phosphorylation in cells, 585f, 

Chapter 15
Burkitt’s lymphoma, 631, 647, Chapter 16

Calorie-restricted diet, life span and, 632, 
Chapter 16, 111–112HP, Chapter 3

Cancer, 627–660, Chapter 16
cancer genome, 649–651, Chapter 16
causes of, 631–632, Chapter 16
cells, properties of, 628–631, 629f, Chapter 16

aneuploidy, 630, 630f, Chapter 16
cells of origin of malignant tumors, 

636–637, 637f, Chapter 16
effects of serum deprivation on growth of, 

629–630, 630f, Chapter 16
growth rate, 629, 629f, Chapter 16
metastasis, 628, 628f, Chapter 16

combating, strategies for, 654–660, Chapter 16
angiogenesis, 659–660, Chapter 16
cancer stem cells, 658–659, Chapter 16
chemotherapy, 628, 637, 644, 648, 653, 654, 

655, 659, Chapter 16
immunotherapy, 654–656, Chapter 16
inhibiting activity of cancer-promoting 

proteins, 656–658, Chapter 16
targeted therapies, 654, Chapter 16

diet and, 632, Chapter 16
gene-expression analysis, 651–654, 652f, 653f, 

654f, Chapter 16
as genetic disorder, 636–638, Chapter 16
microRNAs, 649, Chapter 16
multiple myeloma, 679, 680f, 681, 738–739, 

739f, Chapter 17
mutator phenotype, 649, Chapter 16
new cases and deaths in US in 2015, 628, 629f, 

Chapter 16
oncogenes, 646–648, Chapter 16

activation of proto-oncogene to, 638, 639, 
639f, Chapter 16

discovery of, 633–636EP, Chapter 16
overview of, 638–639, 638f, Chapter 16

research efforts, 628, Chapter 16
therapy, PLK1 as target for, 433HP, 433HPf, 

Chapter 11
tumor-suppressor genes, 638–646, 638f, 640t, 

Chapter 16
APC genes, 645, Chapter 16
BRCA1/BRCA2 genes, 512, 645, Chapter 13, 

Chapter 16
overview of, 638–639, Chapter 16
PTEN gene, 646, Chapter 16
RB gene, 640–641, 641f, Chapter 16
TP53 gene, 642–645, 642f, Chapter 16

Carcinogens, 631, 632f, 643, Chapter 16
Cell-mediated immunity, 665, 685, Chapter 17
Cell replacement therapy, 17–21HP,  

Chapter 1
adult stem cells, 18HP, 18HPf, Chapter 1
direct cell reprogramming, 21HP, Chapter 1
embryonic stem cells, 18–19HP, 19HPf, 

Chapter 1

Topics of Human Interest
NOTE: An f after a page denotes a figure; t denotes a table; fn denotes a footnote; HP denotes a Human Perspective; EP denotes an 

Experimental Pathway.
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induced pluripotent stem cells, 19–21HP, 
20HPf, Chapter 1

Cervical cancer, 631, 632, 637, 637f, 660, 
Chapter 17

Chemotherapy, 628, 637, 644, 648, 653, 654, 655, 
659, Chapter 16

Cholera, 592–593EP, Chapter 15
Cholesterol

in cell membranes, 47, 47f, Chapter 2
in membrane lipids, 120, 120f, Chapter 4
in phospholipids, 120, 120f, Chapter 4
simple sugars and, 42, Chapter 2
as steroid, importance of, 47, Chapter 2
structure of, 39, 40f, 47f, Chapter 2

Chromosomes
aberrations and human disorders, 478–479HP, 

Chapter 12
as carriers of genetic information, 369–370, 

Chapter 10
compaction, 544EP, 545EP, 552, 554, 574, 

Chapter 14
premature, 542, Chapter 14

defined, 368, Chapter 10
discovery of, 368–369, Chapter 10
fertilization, process of, 368–369, 369f, 

Chapter 10
giant, 371–373, 372f, Chapter 10
heterochromatin, 469–473, Chapter 12
homologous, 369, 370f, 371, 371f, Chapter 10
mitotic, structure of, 473–478, 474f, Chapter 12
polytene, 373, Chapter 10
X chromosome inactivation, 470, Chapter 12

Chronic lymphocytic leukemia (CLL), 655–656, 
Chapter 16

Chronic myelogenous leukemia (CML), 75, 75f, 
76, 649, 656, 659, Chapter 2, Chapter 16

Ciliopathies, 333–334HP, Chapter 9
CLL (chronic lymphocytic leukemia), 655–656, 

Chapter 16
Clonal selection theory applied to B cells, 

666–668, 666f, 667f, 668f, Chapter 17
Cloning of animals, 483–484, 484f, Chapter 12
CML (chronic myelogenous leukemia), 75, 75f, 

76, 649, 656, 659, Chapter 2, Chapter 16
Cockayne syndrome (CS), 536HP, Chapter 13
Collagen, diseases of, 226–228, 227f, 228f, 

Chapter 7
Colon cancer

cause of, 631, 632, Chapter 16
EGF receptor and, 655, Chapter 16
genetic mutations in, 642f, 645, 650, 650f, 658, 

Chapter 16
NSAIDs and, 632, Chapter 16
research efforts, 628, Chapter 16
tumor-suppressor genes, 640t, Chapter 16

Color blindness, 470, 594HP, Chapter 12, 
Chapter 15

Congenital Diseases of Glycosylation (CDGs), 
274, Chapter 8

Creutzfeld-Jakob disease (CJD), 62–64HP, 
Chapter 2

Cystic fibrosis (CF), 139, 157–158HP, 157HPf, 275, 
449, Chapter 4, Chapter 8, Chapter 11

Deafness, myosin mutations and, 344, 
Chapter 9

Diabetes
congenital nephrogenic diabetes insipidus, 

142, Chapter 4
Hemoglobin A1c and, 42, Chapter 2
type 1, 613, 669HP, Chapter 15, Chapter 17

type 2, 613, Chapter 15
Diarrhea, 142, 593EP, Chapter 4, Chapter 15
Diet, cancer and, 632, Chapter 16
DNA fingerprinting, 385, 385f, Chapter 10
DNA repair, 531–535, Chapter 13
Down syndrome (trisomy 21), 479HP, 

Chapter 14
Drug development, 75, 111, 432HP, Chapter 2, 

Chapter 3, Chapter 11
Dwarfism, 227, 536HP, Chapter 7, Chapter 13

Embryonic development
cadherins in, 239–240, 240f, 362, Chapter 7, 

Chapter 9
changes in cell shape during, 362, 363f

Embryonic stem cells, 18–19HP, 19HPf, 
735–736, Chapter 1, Chapter 18

Enzyme replacement therapy, 287HP, Chapter 8
Epstein-Barr virus, 631, Chapter 16
Exercise, 177–178HP, Chapter 5
Fabry’s disease, 287HPt, Chapter 8
Fragile X syndrome, 389HPf, Chapter 10
Free radicals, aging and, 34–35HP, Chapter 2

Gaucher’s disease, 287–288HP, 287HPt, 
Chapter 8

Gene number, 389, 390f, 394, Chapter 10
Gene therapy, 25, 158HP, 197HP, 732, Chapter 1, 

Chapter 4, Chapter 5, Chapter 18
Genome analysis, 390, Chapter 10
Gleevec, 75, 75f, 76, 99, 656–657, 657f, 659, 

Chapter 2, Chapter 3, Chapter 16
Glycolipids, diseases of, 118f, 119–120, 119f, 120f, 

122, 286–288HP, Chapter 4, Chapter 8
Graft rejection, 684, Chapter 17
Graves’ disease and thyroiditis, 669HP, 

Chapter 17

Heart attack/heart disease, 18HP, 112HP, 231, 
233, 241HP, 297EP, 302–303, 302f, 461, 
Chapter 1, Chapter 3, Chapter 7, Chapter 8, 
Chapter 12

Heartburn, 20HP, 154, 402HP, Chapter 1, 
Chapter 4, Chapter 10

Heart muscle, 76, 178HP, 249, 620, Chapter 2, 
Chapter 5, Chapter 7, Chapter 15

Hemolytic anemias, 137, Chapter 4
Hemophilia, 392, Chapter 10
Herceptin, 655, Chapter 16
Herpes virus (HHV-8), 631, Chapter 16
HIV (human immunodeficiency virus), 23, 24f, 

25, 25f, 102HP, 433HP, Chapter1, Chapter 3, 
Chapter 11

azidothymidine (AZT) and, 526, Chapter 13
T

H
 cells and, 678, Chapter 17

Human Genome Project, 402, 730, Chapter 10, 
Chapter 18

Human immunodeficiency virus. see HIV 
(human immunodeficiency virus)

Human papilloma virus (HPV), 631, Chapter 16
Humoral immunity, 665, Chapter 17
Huntington’s disease, 433HP, Chapter 10
Hydrocephalus, 239, 334HP, Chapter 7, 

Chapter 9
Hypertension, 99, Chapter 3

I-cell disease, 287–288HP, Chapter 8
Immune response, 661–691, Chapter 17

antibodies, modular structure of, 678–681, 
Chapter 17

autoimmune diseases, 668–671HP, Chapter 17

clonal selection theory applied to B cells, 
666–668, 666f, Chapter 17

distinguishing self from nonself, 686–688, 
Chapter 17

DNA rearrangements producing genes 
encoding B- and T-cell antigen receptors, 
681–683, Chapter 17

lymphocyte activation by cell-surface signals, 
689, Chapter 17

major histocompatibility complex, 672–675HP, 
684–686, Chapter 17

membrane-bound antigen receptor complexes, 
683–684, Chapter 17

overview of, 662–665, Chapter 17
adaptive immune responses, 665, 

Chapter 17
immune system, 662–663, 662f, Chapter 17
immunity, 662, Chapter 17
innate immune responses, 663–665, 665f, 

Chapter 17
signal transduction pathways in lymphocyte 

activation, 689–691, Chapter 17
T cell activation and mechanism of action, 

675–678, Chapter 17
vaccination, 671, Chapter 17

Immune system, 662–663, 662f, Chapter 17
Immunization, 671, Chapter 17
Immunotherapy, 654–656, Chapter 16
Inborn errors of metabolism, 405, Chapter 11
Induced pluripotent stem cells (iPS cells), 

19–21HP, 20HPf, 489, Chapter 1, Chapter 12
Infections

adaptive immune responses, 665, Chapter 17
cancer-causing, 623fn, Chapter 15
innate immune responses, 663–665, 665f, 

Chapter 17
lytic, 24, 25f, Chapter 1
protective mechansims, 664, Chapter 17
resistant bacterial, 102HP, Chapter 3
viral, 24–25, 25f, Chapter 1

Inflammation
cell adhesion in, 241–243HP, 242HPf, 

Chapter 7
as innate responses to invading pathogens, 

664, Chapter 17
Inflammatory bowel diseases (IBDs), 669HP, 

Chapter 17
Influenza, 23, Chapter 1, 74, Chapter 2
Innate immune responses, 663–665, 665f, 

Chapter 17
Insulin signaling, 611–613, Chapter 15
Interferons (IFNs), 676, Chapter 17
Interleukins (ILs), 676, Chapter 17

Kaposi’s sarcoma, 594HP, 631, Chapter 15, 
Chapter 16

Karyotypes, 473, 630f, 640, 645, 651, Chapter 12, 
Chapter 16

Kidneys
cancer, 640t, 642f, Chapter 16
failure from diabetes, 224, Chapter 7
polycystic kidney diseases, 334HP, 334HPf, 

Chapter 9
Klinefelter syndrome, 578HP, Chapter 14
Krabbe’s disease, 287HPt, Chapter 8

Lactose tolerance, 402HP, Chapter 10
Leukemias

acute lymphoblastic, 644, 651, 653, Chapter 16
acute myeloid, 647–648, 651, 652f, 653f, 

Chapter 16
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cancer genome and, 649, Chapter 16
cancer stem cells, 659, Chapter 16
chronic lymphocytic, 655–656, Chapter 16
chronic myelogenous, 656, Chapter 16
gene-expression analysis, 651–652, 653f, 

Chapter 16
genetic mutations in, 644, Chapter 16
genetics and, 636, Chapter 16
immunotherapy for, 655, Chapter 16
microRNAs and, 649, Chapter 16
new cases and deaths in US in 2015, 629f, 

Chapter 16
oncogenes and, 632–636EP, 647–648, 

Chapter 16
protein-inhibiting drugs for, 656, Chapter 16
tumor-suppressor genes and, 642, Chapter 16

Leukocyte adhesion deficiency (LAD), 242HP, 
Chapter 7

Listeria monocytogenes, 304, 358EP, Chapter 8, 
Chapter 9

Longevity, 111–112HP, 477, 480, 507, 510, 
Chapter 3, Chapter 12

Lysosomal storage disorders, 287HP, 287HPf, 
287HPt, Chapter 8

Macular degeneration, 19–20HP, 401HP, 433HP, 
Chapter 1, Chapter 10, Chapter11

Mad cow disease, 63HP, Chapter 2
Malaria, 137, 631, 662, 685, Chapter 4, 

Chapter 16, Chapter 17
Marijuana, 165, 211, Chapter 4, Chapter 6
Marker chromosome, 477, Chapter 12
Melanoma

BRAF genes in, 647, 649, Chapter 16
genetic mutations in, 642f, Chapter 16
immunotherapy for, 655, Chapter 16
new cases and deaths in US in 2015, 629f, 

Chapter 16
protein-inhibiting drugs for, 657, 657f, 658, 

Chapter 16
tumor-suppressor genes, 640t, Chapter 16
ultraviolet radiation and, 535, 536–537HP, 631, 

Chapter 13, Chapter 16
Metabolism, 103–105, Chapter 3

capture and utilization of energy, 103–105, 
Chapter 3

defined, 103, Chapter 3
enzymes of, 6, 29EP, Chapter 1
inborn errors of, 405, Chapter 11
oxidation-reduction (redox) reactions, 103, 

Chapter 3
photosynthetic, 202–203, Chapter 6
stages of, 103, 104f, Chapter 3

Metastasis, 628, 628f, 637, 645, Chapter 16
cell adhesion in, 241–243HP, 243HPf,  

Chapter 7
cell-surface properties of, 242HP,  

Chapter 7
defined, 242HP, Chapter 7
gap Junctions in, 251–253EP, Chapter 7
miRNAs in, 649, Chapter 16
oncogenes in, 638, 639, Chapter 16
spread of, steps in, 243HPf, Chapter 7

Methicillin resistant Staph aureus (MRSA), 
101, Chapter 3.

Microbiome, 14–15, Chapter 1
Mitochondrial diseases, 195–196HP, 196HPf, 

Chapter 5
Multiple sclerosis (MS), 162, 669HP, Chapter 4, 

Chapter 17
Muscle fiber, 346, 346f, Chapter 9

Muscular dystrophy, 139, 338, 353, 449, 461, 
Chapter 4, Chapter 9, Chapter 11, 
Chapter 12

Mutagenic agents, 371–372, Chapter 10
Mutations, 370, Chapter 10

altering structure of signaling proteins, 594HP, 
Chapter 15

in DNA, 27EP, Chapter 1
gain-of-function, 388HP, Chapter 10
genetic

in breast cancer, 640, 642f, 644, Chapter 16
colon cancer in, 642f, 645, 650, 650f, 658, 

Chapter 16
in leukemias, 644, Chapter 16
in melanoma, 642f, Chapter 16
in prostate cancer, 640, 642f, 644, Chapter 16

in inherited disorders, 62, 64HP, 66HP, 67HP, 
Chapter 2

in iPS cells, 20HP, Chapter 1
J. D., 299EP, Chapter 8
molecular structure of genes and, 5, Chapter 1
myosin, deafness and, 344, Chapter 9
nonsense, 448, Chapter 11
somatic, 594HP, Chapter 15
spontaneous rate of, 524, Chapter 13
viral, 24, Chapter 1

Nerve cells (neurons)
function of, 159, Chapter 4
postsynaptic, 148EPn, 164, 165, Chapter 4
presynaptic, 163, 163f, 164, 165, Chapter 4
structure of, 159f, Chapter 4
synaptic transmission, 162–165, 163f, 164f, 

Chapter 4
Nerve gas, 98, 114, 115, 165, Chapter 3, 

Chapter 4
Nervous system disorders, 195–197HP, 338, 

387–389HP, 669HP, 671HP, Chapter 5, 
Chapter 9, Chapter 10, Chapter 16

Neurofibrillary tangles (NFTs), 64HPf, 67HP, 
Chapter 2

Nicotine addiction, 148EP, Chapter 4
Niemann-Pick type C disease, 287HPt, 288HP, 

302, Chapter 8
Non-Hodgkin’s B-cell lymphoma, 655, Chapter 16
Nonself, distinguishing from self, 686–688, 

Chapter 17
Nonsteroidal anti-inflammatory drugs 

(NSAIDs), 631, Chapter 16

Ovarian cancer, 642f, 645, 655, 658, Chapter 16

Pap smear, 637, 637f, 660, Chapter 16
Parkinson’s disease (PD), 195–196HP, Chapter 5
Periodontal disease, 243HP, Chapter 7
Peroxisomal diseases, 196–197HP, Chapter 7
Polycystic kidney diseases (PKD), 334HP, 

334HPf, Chapter 9
Prader-Willi syndrome (PWS), 501, Chapter 12
Precocious puberty, 594HPt, 595HP, Chapter 15
Pregnancy, IgG-based immunity, 680–681, 

Chapter 17
Prilosec, 154, Chapter 4
Prions, 64HP, 249, Chapter 2, Chapter 7
Prostate cancer

cause of, 632, Chapter 16
genetics and, 636, Chapter 16
immunotherapy, 655, Chapter 16
new cases and deaths in US in 2015, 629f, 

Chapter 16
protein-inhibiting drugs for, 657, Chapter 16

PSA test for, 72, Chapter 2
RB mutations, 640, Chapter 16
research efforts, 628, Chapter 16
TP53 mutations in, 642f, 644, Chapter 16

Prozac, 165, Chapter 4

Radiation, as carcinogen, 372, 384, 534, 535, 
536HP, 537HP, 550–551, Chapter 10, 
Chapter 13, Chapter 14

Retinoblastoma, 640–641, 641f, Chapter 16
Retroviruses, 393, 607, 631, 732, Chapter 10, 

Chapter 15, Chapter 16, Chapter 18
Rheumatoid arthritis, 669HP, Chapter 17
Rheumatoid arthritis, 669HP, 670HP, 671HP, 

740, Chapter 11, Chapter 18
RNA interference (RNAi), 265, 265f, 430–432, 

430f, 736–737, 737f, Chapter 8, Chapter 11, 
Chapter 18

clinical applications of, 432–433HP

Sandhoff ’s disease, 287HPt, Chapter 8
Scurvy, 226, Chapter 1
Self, distinguishing from nonself, 686–688, 

Chapter 17
Sex chromosomes, 382, 469, 577–578HP, 

Chapter 10, Chapter 12, Chapter 14
Sexual arousal, 620, Chapter 15
Sickle cell anemia, 53, 53f, 437, Chapter 2, 

Chapter 11
Skin

blistering diseases, 237, 245, 338, 671, 
Chapter 7, Chapter 9, Chapter 17

cancer (see melanoma)
grafts, 684, Chapter 17
tight junctions, 244f, 245–247, 246f, 247f, 

Chapter 7
Smell (olfaction), 603, Chapter 15
Smoking, 148EPfn, 400HP, 631, Chapter 4, 

Chapter 10, Chapter 16
Snake venom, 233, Chapter 7
Speech and language disorders, 397,  

Chapter 10
Sphingolipid storage diseases, 287HP, 287HPt, 

Chapter 8
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WE ARE CELLS

We are made of cells. Cells make up our skin, our 
organs, and our muscles. The brain, the seat of our 
thoughts and desires, is made of cells. Our blood 
vessels teem with cells. Fertilization is no more or less 
than a joining of two separate cells to produce a single 
new cell, which then multiplies to produce the embryo. 
When we grow from a tiny embryo into a large adult, we 
do so by adding more and more cells. When we get sick, 
it is often because our cells have run amok. And when 
we grow old, it is because our cells gradually give up the 
ghost. After we die and are buried, soon the only 
remnants of our existence are bones, teeth, and hair, 
structures that were sculpted in life by the ceaseless 
activity of cells. Many medicines work by changing how 
cells behave, and in recent years cells themselves are 
being used as medicines to cure sick people. Because all 
living things are made of one or more cells, the origin of 
life corresponds to the origin of cells. Starting with this 
chapter, we will explore what cells are and how they work, 
themes that will be expanded throughout this book.

Introduction to the Study 
of Cell and Molecular Biology

Diagram of nerve cells from the cat brain, hand‐drawn by Santiago Ramón 
y Cajal. Ramón y Cajal was the first to recognize that the brain is made 
up of huge numbers of individual cells, rather than a continuous 
connected network as proposed by his competitor, Camillo Golgi. Ramón 
y Cajal and Golgi fought a protracted battle over this point, but 
eventually the meticulous detail of Ramón y Cajal’s work convinced the 
world that the brain is indeed a collective of individual cells.

SOURCE: Histology of the Nervous System of Man and Vertebrates by 
Cajal (1995) Fig. “Neurons in the cat brain.” By permission of Oxford 
University Press.

Karp-c01.indd   1 11/23/2015   10:04:37 PM



C
H

A
P

T
E

R
 1 

Intro
d

uctio
n to

 the Stud
y o

f C
ell and

 M
o

lecular B
io

lo
g

y

2   1.1     The Discovery of Cells 
 Cells, and the structures they comprise, are too small to be directly 

seen, heard, or touched. In spite of this tremendous handicap, cells 

are the subject of hundreds of thousands of publications each year, 

with virtually every aspect of their minuscule structure coming under 

scrutiny. In many ways, the study of cell and molecular biology stands 

as a tribute to human curiosity for seeking to discover and to human 

creative intelligence for devising the complex instruments and elabo-

rate techniques by which these discoveries can be made. This is not to 

imply that cell and molecular biologists have a monopoly on these 

noble traits. At one end of the scientific spectrum, astronomers are 

utilizing an orbiting telescope to capture images of primordial galax-

ies that are so far from Earth they appear to us today as they existed 

more than 13 billion years ago, only a few hundred million years after 

the Big Bang. At the other end of the spectrum, nuclear physicists 

have recently forced protons to collide with one another at velocities 

approaching the speed of light, confirming the existence of a hypoth-

esized particle—the Higgs boson—that is proposed to endow all 

other subatomic particles with mass. Clearly, our universe consists of 

worlds within worlds, all aspects of which make for fascinating study. 

 As will be apparent throughout this book, cell and molecular 

biology is  reductionist ; that is, it is based on the view that knowledge 

of the parts of the whole can explain the character of the whole. 

When viewed in this way, our feeling for the wonder and mystery of 

life may be replaced by the need to explain everything in terms of the 

workings of the “machinery” of the living system. To the degree to 

which this occurs, it is hoped that this loss can be replaced by an 

equally strong appreciation for the beauty and complexity of the 

mechanisms underlying cellular activity. 

  Microscopy 
 Because of their small size, cells can only be observed with the aid of a 

microscope , an instrument that provides a magnified image of a tiny 

object. We do not know when humans first discovered the remarkable 

ability of curved‐glass surfaces to bend light and form images. 

Spectacles were first made in Europe in the thirteenth century, and the 

first compound (double‐lens) light microscopes were constructed by 

the end of the sixteenth century. By the mid‐1600s, a handful of pio-

neering scientists had used their handmade microscopes to uncover a 

world that would never have been revealed to the naked eye. The dis-

covery of cells (FIGURE   1.1   a ) is generally credited to Robert Hooke, an 

English microscopist who, at age 27, was awarded the position of cura-

tor of the Royal Society of London, England ’ s foremost scientific acad-

emy. One of the many questions Hooke attempted to answer was why 

stoppers made of cork (part of the bark of trees) were so well suited to 

holding air in a bottle. As he wrote in 1665: “I took a good clear piece 

of cork, and with a Pen‐knife sharpen ’ d as keen as a Razor, I cut a piece 

of it off, and . . . then examining it with a  Microscope , me thought I 

could perceive it to appear a little porous . . . much like a Honeycomb.” 

Hooke called the pores  cells  because they reminded him of the cells 

inhabited by monks living in a monastery. In actual fact, Hooke had 

observed the empty cell walls of dead plant tissue, walls that had origi-

nally been produced by the living cells they surrounded. 

      Meanwhile, Antonie van Leeuwenhoek, a Dutchman who earned 

a living selling clothes and buttons, was spending his spare time 

grinding lenses and constructing simple microscopes of remarkable 

quality (Figure   1.1   b ). For 50 years, Leeuwenhoek sent letters to the Royal 

Society of London describing his microscopic observations—along 

with  a rambling discourse on his daily habits and the state of his 

health. Leeuwenhoek was the first to examine a drop of pond water 

under the microscope and, to his amazement, observe the teeming 

microscopic “animalcules” that darted back and forth before his 

eyes. He was also the first to describe various forms of bacteria, 

which he obtained from water in which pepper had been soaked and 

from scrapings from his teeth. His initial letters to the Royal Society 

describing this previously unseen world were met with such skepti-

cism that the society dispatched its curator, Robert Hooke, to con-

firm the observations. Hooke did just that, and Leeuwenhoek was 

soon a worldwide celebrity, receiving visits in Holland from Peter 

the Great of Russia and the queen of England.  

  Cell Theory 
 It wasn ’ t until the 1830s that the widespread importance of cells was 

realized. In 1838, Matthias Schleiden, a German lawyer turned bota-

nist, concluded that, despite differences in the structure of various 

(a)

(b)

FIGURE 1.1     The discovery of cells.           ( a ) One of Robert Hooke ’ s more 
ornate compound (double‐lens) microscopes. (Inset) Hooke ’ s drawing of a 
thin slice of cork, showing the honeycomb‐like network of “cells.” 
( b ) Single‐lens microscope used by Antonie van Leeuwenhoek to observe 
bacteria and other microorganisms. The biconvex lens, which was capable 
of magnifying an object approximately 270 times and providing a resolution 
of approximately  1.35 μm, was held between two metal plates.

 SOURCE: (a) The Granger Collection, New York; inset Biophoto Associates/
Getty Images, Inc.; (b) © Bettmann/Corbis
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3tissues, plants were made of cells and that the plant embryo arose 

from a single cell. In 1839, Theodor Schwann, a German zoologist 

and colleague of Schleiden ’ s, published a comprehensive report on 

the cellular basis of animal life. Schwann concluded that the cells of 

plants and animals are similar structures and proposed these two 

tenets of the  cell theory :

 ●   All organisms are composed of one or more cells. 

 ●  The cell is the structural unit of life.   

 Schleiden and Schwann ’ s ideas on the  origin  of cells proved to be less 

insightful; both agreed that cells could arise from noncellular mate-

rials. Given the prominence that these two scientists held in the sci-

entific world, it took a number of years before observations by other 

biologists were accepted as demonstrating that cells did not arise in 

this manner any more than organisms arose by spontaneous genera-

tion. By 1855, Rudolf Virchow, a German pathologist, had made a 

convincing case for the third tenet of the cell theory:

 ●   Cells can arise only by division from a preexisting cell.   

         1.2     Basic Properties of Cells 
 Just as plants and animals are alive, so too are cells. Life, in fact, is the 

most basic property of cells, and cells are the smallest units to exhibit 

this property. Unlike the parts of a cell, which simply deteriorate 

if isolated, whole cells can be removed from a plant or animal and 

cultured in a laboratory where they will grow and reproduce for 

extended periods of time. If mistreated, they may die. Death can also 

be considered one of the most basic properties of life, because only a 

living entity faces this prospect. Remarkably, cells within the body 

generally die “by their own hand”—the victims of an internal program 

that causes cells that are no longer needed or cells that pose a risk of 

becoming cancerous to eliminate themselves. 

 The first culture of human cells was begun by George and 

Martha Gey of Johns Hopkins University in 1951. The cells were 

obtained from a malignant tumor and named HeLa cells after the 

donor, Henrietta Lacks. HeLa cells—descended by cell division from 

this first cell sample—are still being grown in laboratories around 

the world today (FIGURE   1.2  ). Because they are so much simpler to 

study than cells situated within the body, cells grown  in vitro  (i.e., in 

culture, outside the body) have become an essential tool of cell and 

molecular biologists. In fact, much of the information that will be 

discussed in this book has been obtained using cells grown in 

 laboratory cultures. 

      We will begin our exploration of cells by examining a few of 

their most fundamental properties. 

  Cells Are Highly Complex and Organized 
 Complexity is a property that is evident when encountered, but dif-

ficult to describe. For the present, we can think of complexity in 

terms of order and consistency. The more complex a structure, the 

 REVIEW 

1.        When Robert Hooke first described cells, what was he 
actually looking at?   

2.    What are the three componnents of cell theory?   

FIGURE 1.2        HeLa cells , such as the ones pictured here, were the first 
human cells to be kept in culture for long periods of time and are still in use 
today. Unlike normal cells, which have a finite lifetime in culture, these 
cancerous HeLa cells can be cultured indefinitely as long as conditions are 
favorable to support cell growth and division.

SOURCE: Torsten Wittmann/Photo Researchers, Inc. 

greater the number of parts that must be in their proper place, the 

less  tolerance for errors in the nature and interactions of the parts, 

and the more regulation or control that must be exerted to maintain 

the system. Cellular activities can be remarkably precise. DNA dupli-

cation, for example, occurs with an error rate of less than one  mistake 

every ten million nucleotides incorporated—and most of these are 

quickly corrected by an elaborate repair mechanism that recognizes 

the defect. 

 During the course of this book, we will have occasion to con-

sider the complexity of life at several different levels. We will discuss 

the organization of atoms into small‐sized molecules; the organiza-

tion of these molecules into giant polymers; and the organization of 

different types of polymeric molecules into complexes, which in 

turn are organized into subcellular organelles and finally into cells. 

As will be apparent, there is a great deal of consistency at every level. 

Each type of cell has a consistent appearance when viewed under a 

high‐powered electron microscope; that is, its organelles have a par-

ticular shape and location, from one individual of a species to 

another. Similarly, each type of organelle has a consistent composi-

tion of macromolecules, which are arranged in a predictable pattern. 

Consider the cells lining your intestine that are responsible for 

removing nutrients from your digestive tract. FIGURE   1.3   illustrates 

the many different levels of organization present in such a tissue. 

      The epithelial cells that line the intestine are tightly connected 

to each other like bricks in a wall (Figure   1.3   inset 1). The apical ends 

of these cells, which face the intestinal channel, have long processes 

( microvilli ) that facilitate absorption of nutrients (inset 2). The 

microvilli are able to project outward from the apical cell surface 

because they contain an internal skeleton made of filaments, which 

in turn are composed of protein ( actin ) monomers polymerized in a 

characteristic array (inset 3). At their basal ends, intestinal cells have 

large numbers of mitochondria (inset 4) that provide the energy 

required to fuel various membrane transport processes. Each mito-

chondrion is composed of a defined pattern of internal membranes, 
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Inset 6

Inset 5

50 Å

25 nm

Apical 
microvilli

Inset 3

Inset 2

Inset 1 Inset 4

MitochondriaMitochondria

Inset 7

Villus of the small intestinal wall

FIGURE 1.3     Levels of cellular and molecular organization.     The brightly colored photograph of a stained section shows the microscopic structure of a 
villus of the wall of the small intestine, as seen through the light microscope. Inset 1 shows an electron micrograph of the epithelial layer of cells that lines 
the inner intestinal wall. The apical surface of each cell, which faces the channel of the intestine, contains a large number of microvilli involved in nutrient 
absorption. The basal region of each cell contains large numbers of mitochondria, where energy is made available to the cell. Inset 2 shows the apical 
microvilli; each microvillus contains a bundle of actin filaments. Inset 3 shows the actin protein subunits that make up each filament. Inset 4 shows an 
individual mitochondrion similar to those found in the basal region of the epithelial cells. Inset 5 shows a portion of an inner membrane of a mitochondrion 
including the stalked particles that project from the membrane and correspond to the sites where ATP is synthesized. Insets 6 and 7 show molecular models 
of the ATP‐ synthesizing machinery, which is discussed at length in Chapter   5  .

SOURCE: Light micrograph Cecil Fox/Photo Researchers; inset 1 courtesy of Shakti P. Kapur, Georgetown University Medical Center; inset 2 from Mark S. 
Mooseker and Lewis G. Tilney, J. Cell Biol. 67:729, 1975, reproduced with permission of the Rockefeller University Press; inset 3 courtesy of Kenneth C. 
Holmes; inset 4 Keith R. Porter/Photo Researchers; inset 5 courtesy of Humberto Fernandez-Moran; inset 6 courtesy of Roderick A. Capaldi; inset 7 courtesy 
of Wolfgang Junge, Holger Lill, and Siegfried Engelbrecht, University of Osnabrück, Germany. 
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5which in turn are composed of a consistent array of proteins, includ-

ing an electrically powered ATP‐synthesizing machine that projects 

from the inner membrane like a ball on a stick (insets 5–7). 

 One  of the truly fascinating aspects of cells is that they achieve 

organization at many different scales using physical processes that 

are essentially random. Even though living cells are highly complex 

and ordered, it has become increasingly evident in recent years that 

random ( stochastic ) events play a critical role in all cellular activities. 

Many of the molecules within living cells are in a constant state of 

random movement, propelled by thermal energy they acquire from 

their environment. Cells have evolved the capacity to utilize this 

movement in highly directed ways. We can consider one example of 

this phenomenon, keeping in mind that many other cases could be 

described. Proteins are complex molecules often consisting of hun-

dreds of amino acid building blocks and attaining molecular masses 

over a hundred thousand Daltons. Despite their huge size, proteins 

consist of a polypeptide chain that has to fold into a precisely defined 

three‐dimensional (native) structure. If it fails to fold properly, the 

protein will lack meaningful function. In 1969, Cyrus Levinthal of 

Columbia University identified certain features of this folding pro-

cess that became known as Levinthal ’ s paradox. For one part of the 

paradox, Levinthal noted that, if protein folding depended solely on 

random molecular movements, it would require a period of time 

greater than the age of the universe for a protein to fold into its native 

structure. According to this scenario, the time it would take for a 

protein to fold properly might be compared to the period required 

for a monkey sitting at a piano to compose one of Beethoven ’ s con-

certos. The paradox inherent in protein folding becomes evident 

knowing that, despite their enormous complexity, proteins actually 

acquire their native structures within fractions of a second. How is 

the paradox resolved? Even though folding of a protein is driven by 

random thermal motion, the process occurs in stepwise fashion so 

that the protein folds along pathways in which less structured inter-

mediates guide the formation of better formed subsequent interme-

diates. In other words, the folding pathway allows proteins to rapidly 

“jump” from one step to the next until the native structure is reached. 

To carry over the solution of the protein folding paradox to the mon-

key at the piano, it would be as if every time the monkey tapped an 

appropriate key, that note would be recorded, allowing the monkey 

to move toward the next note in the concerto. As long as the monkey 

was an active player, the composition of the concerto could be 

accomplished quite rapidly. It can be said that these types of events 

are “biased.” They depend upon random activities, but they lead to 

directed outcomes because they select for intermediate stages that lie 

on the path leading to the desired outcome. 

 Fortunately for cell and molecular biologists, evolution has 

moved rather slowly at the levels of biological organization with 

which they are concerned. Whereas a human and a cat, for example, 

have very different anatomical features, the cells that make up their 

tissues, and the organelles that make up their cells, are very similar. 

The actin filament portrayed in Figure   1.3  , inset 3, and the ATP‐ 

synthesizing enzyme of inset 6 are virtually identical to similar 

structures found in such diverse organisms as humans, snails, yeast, 

and redwood trees. Information obtained by studying cells from one 

type of organism often has direct application to other forms of life. 

Many of the most basic processes, such as the synthesis of proteins, 

the conservation of chemical energy, or the construction of a 

 membrane, are remarkably similar in all living organisms.  

  Cells Possess a Genetic Program 
and the Means to Use It 
 Organisms are built according to information encoded in a collec-

tion of genes, which are constructed of DNA. The human genetic 

program contains enough information, if converted to words, to fill 

millions of pages of text. Remarkably, this vast amount of informa-

tion is packaged into a set of chromosomes that occupies the space 

of a cell nucleus—hundreds of times smaller than the dot on this  i . 

 Genes are more than storage lockers for information: They con-

stitute the recipes for constructing cellular structures, the directions 

for running cellular activities, and the program for making more of 

themselves. The molecular structure of genes allows for changes in 

genetic information (mutations) that lead to variation among indi-

viduals, which forms the basis of biological evolution. Discovering 

the mechanisms by which cells use and transmit their genetic infor-

mation has been one of the greatest achievements of science in recent 

decades.  

  Cells Are Capable of Producing 
More of Themselves 
 Just as individual organisms are generated by reproduction, so too are 

individual cells. Cells reproduce by division, a process in which the con-

tents of a “mother” cell are distributed into two “daughter” cells. Prior to 

division, the genetic material is faithfully duplicated, and each daughter 

cell receives a complete and equal share of genetic information. In most 

cases, the two daughter cells have approximately equal volume. In some 

cases, however, as occurs when a human oocyte undergoes division, 

one of the cells can retain nearly all of the cytoplasm, even though it 

receives only half of the genetic material (FIGURE   1.4  ). 

        Cells Acquire and Utilize Energy 
 Every biological process requires the input of energy. Virtually all of 

the energy utilized by life on the Earth ’ s surface arrives in the form of 

electromagnetic radiation from the sun. The energy of light is trapped 

by light‐absorbing pigments present in the membranes of photosyn-

thetic cells (FIGURE   1.5  ). Light energy is converted by photosynthesis 

FIGURE 1.4     Cell reproduction.     This mammalian oocyte has recently 
undergone a highly unequal cell division in which most of the cytoplasm 
has been retained within the large oocyte, which has the potential to be 
fertilized and develop into an embryo. The other cell is a nonfunctional 
remnant that consists almost totally of nuclear material (indicated by the 
blue‐staining chromosomes, arrow). 

SOURCE: Courtesy of Jonathan van Blerkom. 
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into chemical energy that is stored in energy‐rich carbohydrates, 

such as sucrose or starch. For most animal cells, energy arrives pre-

packaged, often in the form of the sugar glucose. In humans, glucose 

is released by the liver into the blood where it circulates through the 

body delivering chemical energy to all the cells. Once in a cell, the 

glucose is disassembled in such a way that its energy content can be 

stored in a readily available form (usually as ATP) that is later put to 

use in running all of the cell ’ s myriad energy‐requiring activities. 

Cells expend an enormous amount of energy simply breaking down 

and rebuilding the macromolecules and organelles of which they are 

made. This continual “turnover,” as it is called, maintains the integ-

rity of cell components in the face of inevitable wear and tear and 

enables the cell to respond rapidly to changing conditions. 

        Cells Carry Out a Variety 
of Chemical Reactions 
 Cells function like miniaturized chemical plants. Even the simplest 

bacterial cell is capable of hundreds of different chemical transfor-

mations, none of which occurs at any significant rate in the inani-

mate world. Virtually all chemical changes that take place in cells 

require  enzymes —molecules that greatly increase the rate at which a 

chemical reaction occurs. The sum total of the chemical reactions in 

a cell represents that cell ’ s  metabolism .  

  Cells Engage in Mechanical Activities 
 Cells are sites of bustling activity. Materials are transported from place 

to place, structures are assembled and then rapidly disassembled, and, 

in many cases, the entire cell moves itself from one site to another. 

These types of activities are based on dynamic, mechanical changes 

within cells, many of which are initiated by changes in the shape of 

“motor” proteins. Motor proteins are just one of many types of molec-

ular “machines” employed by cells to carry out mechanical activities.  

  Cells Are Able to Respond to Stimuli 
 Some cells respond to stimuli in obvious ways; a single‐celled protist, 

for example, moves away from an object in its path or moves toward 

a source of nutrients. Cells within a multicellular plant or animal 

respond to stimuli less obviously. Most cells are covered with  recep-

tors  that interact with substances in the environment in highly spe-

cific ways. Cells possess receptors to hormones, growth factors, and 

extracellular materials, as well as to substances on the surfaces of 

other cells. A cell ’ s receptors provide pathways through which exter-

nal stimuli can evoke specific responses in target cells. Cells may 

respond to specific stimuli by altering their metabolic activities, 

moving from one place to another, or even committing suicide.  

  Cells Are Capable of Self‐Regulation 
 In recent years, a new term has been used to describe cells:  robustness . 

Cells are robust, that is, hearty or durable, because they are protected 

from dangerous fluctuations in composition and behavior. Should 

such fluctuations occur, specific feedback circuits are activated that 

serve to return the cell to the appropriate state. In addition to requir-

ing energy, maintaining a complex, ordered state requires constant 

regulation. The importance of a cell ’ s regulatory mechanisms becomes 

most evident when they break down. For example, failure of a cell to 

correct a mistake when it duplicates its DNA may result in a debilitat-

ing mutation, or a breakdown in a cell ’ s growth‐control safeguards 

can transform the cell into a cancer cell with the capability of destroy-

ing the entire organism. We are gradually learning how a cell controls 

its activities, but much more is left to discover. 

 Consider the following experiment conducted in 1891 by Hans 

Driesch, a German embryologist. Driesch found that he could com-

pletely separate the first two or four cells of a sea urchin embryo and 

each of the isolated cells would proceed to develop into a normal 

embryo (FIGURE   1.6  ). How can a cell that is normally destined to 

FIGURE 1.5     Acquiring energy.     A living cell of the filamentous alga 
Spirogyra . The ribbon‐like chloroplast, which is seen to zigzag through the 
cell, is the site where energy from sunlight is captured and converted to 
chemical energy during photosynthesis.
SOURCE: M. I. Walker/Photo Researchers, Inc. 

Normal development Experimental result

FIGURE 1.6  Self‐regulation.     The left panel depicts the normal develop-
ment of a sea urchin in which a fertilized egg gives rise to a single embryo. 
The right panel depicts an experiment in which the cells of an early embryo 
are separated from one another after the first division, and each cell is 
allowed to develop in isolation. Rather than developing into half of an 
embryo, as it would if left undisturbed, each isolated cell recognizes the 
absence of its neighbor, regulating its development to form a complete 
(although smaller) embryo. 
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7form only part of an embryo regulate its own activities and form an 

entire embryo? How does the isolated cell recognize the absence of 

its neighbors, and how does this recognition redirect the entire 

course of the cell ’ s development? How can a part of an embryo have 

a sense of the whole? We are not able to answer these questions much 

better today than we were more than a hundred years ago when the 

experiment was performed. 

      Throughout this book we will be discussing processes that 

require a series of ordered steps, much like the assembly‐line con-

struction of an automobile in which workers add, remove, or make 

specific adjustments as the car moves along. In the cell, the informa-

tion for product design resides in the nucleic acids, and the con-

struction workers are primarily proteins. It is the presence of these 

two types of macromolecules that, more than any other factor, sets 

the chemistry of the cell apart from that of the nonliving world. In the 

cell, the workers must act without the benefit of conscious direction. 

Each step of a process must occur spontaneously in such a way that 

the next step is automatically triggered. In many ways, cells operate 

in a manner analogous to the orange‐squeezing contraption discov-

ered by “The Professor” and shown in FIGURE   1.7  . Each type of cel-

lular activity requires a unique set of highly complex molecular tools 

and machines—the products of eons of natural selection and bio-

logical evolution. A primary goal of biologists is to understand the 

molecular structure and role of each component involved in a par-

ticular activity, the means by which these components interact, and 

the mechanisms by which these interactions are regulated. 

        Cells Evolve 
 How did cells arise? Of all the major questions posed by biologists, 

this question may be the least likely ever to be answered. It is pre-

sumed that cells evolved from some type of precellular life form, 

which in turn evolved from nonliving organic materials that were 

FIGURE 1.7  Cellular activities     are often analogous to this 
“Rube Goldberg machine” in which one event “automatically” 
triggers the next event in a reaction sequence.

SOURCE: Rube Goldberg is the ® and © of Rube Goldberg, Inc.

present in the primordial seas. Whereas the origin of cells is shrouded 

in near‐total mystery, the evolution of cells can be studied by exam-

ining organisms that are alive today. If you were to observe the fea-

tures of a bacterial cell living in the human intestinal tract (see 

FIGURE   1.18   a ) and a cell that is part of the lining of that tract 

(Figure   1.3  ), you would be struck by the differences between the two 

cells. Yet both of these cells, as well as all other cells that are present 

in living organisms, share many features, including a common 

genetic code, a plasma membrane, and ribosomes. According to one 

of the tenets of modern biology, all living organisms have evolved 

from a single, common ancestral cell that lived more than three bil-

lion years ago. Because it gave rise to all the living organisms that we 

know of, this ancient cell is often referred to as the  last universal com-

mon ancestor  (or  LUCA ). We will examine some of the events that 

occurred during the evolution of cells in the Experimental Pathway 

at the end of the chapter. Future chapters will explore biochemical 

aspects of the origin of life. Keep in mind that evolution is not simply 

an event of the past, but an ongoing process that continues to modify 

the properties of cells that will be present in organisms that have yet 

to appear. For example, evolution of drug resistance in bacteria is a 

major health concern and will be discussed in Section 3.8. 

 REVIEW 

1.        List the fundamental properties shared by all cells. 
Describe the importance of each of these properties.   

2.        Describe the features of cells that suggest that all 
living organisms are derived from a common ancestor.   

3.        What is the source of energy that supports life on 
Earth? How is this energy passed from one organism 
to the next?   
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8          1.3     Characteristics That 
Distinguish Prokaryotic 
and Eukaryotic Cells 
 Once the electron microscope became widely available, biologists were 

able to examine the internal structure of a wide variety of cells. It 

became apparent from these studies that there were two basic classes of 

cells—prokaryotic and eukaryotic—distinguished by their size and the 

types of internal structures, or  organelles , they contain (FIGURE   1.8  ). 

The existence of two distinct classes of cells, without any known inter-

mediates, represents one of the most fundamental evolutionary divi-

sions in the biological world. The structurally simpler  prokaryotic

cells include bacteria, whereas the structurally more complex  eukaryotic
cells include protists, fungi, plants, and animals. 1        

 We are not sure when prokaryotic cells first appeared on Earth. 

Evidence of prokaryotic life has been obtained from rocks approxi-

mately 2.7 billion years of age. Not only do these rocks contain what 

appear to be fossilized microbes, they contain complex organic mol-

ecules that are characteristic of particular types of prokaryotic organ-

isms, including cyanobacteria. It is unlikely that such molecules could 

have been synthesized abiotically, that is, without the involvement of 

living cells. Cyanobacteria almost certainly appeared by 2.4 billion 

FIGURE 1.8     The structure of cells.               Schematic diagrams of a “generalized” bacterial ( a ), plant ( b ), and animal ( c ) cell. Note: Organelles are not drawn 
to scale.

SOURCE: From D. J. Des Marais, Science 289:1704, 2001. Copyright © 2000. Reprinted with permission from AAAS. 
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1   Those interested in examining a proposal to do away with the concept of prokaryotic 

versus eukaryotic organisms can read a brief essay by    N. R.   Pace   in  Nature   441 : 289 ,  2006  .
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FIGURE 1.8 (continued )

years ago, because that is when the atmosphere became infused with 

molecular oxygen ( O 2  ), which is a by‐product of the photosynthetic 

activity of these prokaryotes. The dawn of the age of eukaryotic cells 

is also shrouded in uncertainty. Complex multicellular animals 

appear rather suddenly in the fossil record approximately 600 million 

years ago, but there is considerable evidence that simpler eukaryotic 

organisms were present on Earth more than one billion years earlier. 

The estimated time of appearance on Earth of several major groups of 

organisms is depicted in FIGURE   1.9  . Even a superficial examination 

of Figure   1.9   reveals how “quickly” life arose following the formation 

of Earth and cooling of its surface and how long it took for the subse-

quent evolution of complex animals and plants. 

      The following brief comparison between prokaryotic and eukary-

otic cells reveals many basic differences between the two types, as well 

as many similarities (see Figure   1.8  ). The similarities and differences 

between the two types of cells are listed in Table    1.1  . The shared prop-

erties reflect the fact that eukaryotic cells almost certainly evolved 

from prokaryotic ancestors. Because of their common ancestry, both 

types of cells share an identical genetic language, a common set of 

metabolic pathways, and many common structural features. For exam-

ple, both types of cells are bounded by plasma membranes of similar 

construction that serve as a selectively permeable barrier between the 

living and nonliving worlds. Both types of cells may be surrounded by 

a rigid, nonliving  cell wall  that protects the delicate life form within. 

Although the cell walls of prokaryotes and eukaryotes may have simi-

lar functions, their chemical composition is very different. 

      Internally, eukaryotic cells are much more complex—both 

structurally and functionally—than prokaryotic cells (Figure   1.8  ). 
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FIGURE 1.9     Earth ’ s biogeologic clock.     A portrait of the past five billion 
years of Earth ’ s history showing a proposed time of appearance of major 
groups of organisms. Complex animals (shelly invertebrates) and vascular 
plants are relatively recent arrivals. The time indicated for the origin of life is 
speculative. In addition, photosynthetic bacteria may have arisen much 
earlier, hence the question mark. The geologic eras are indicated in the 
center of the illustration.

SOURCE: From D. J. Des Marais, Science 289:1704, 2001. Copyright © 2001. 
Reprinted with permission from AAAS. 
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